Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38363548

ABSTRACT

Radiation exposure occurs during medical procedures, nuclear accidents, or spaceflight, making effective medical countermeasures a public health priority. Naïve T cells are highly sensitive to radiation-induced depletion, although their numbers recover with time. Circulating memory CD8+ T cells are also depleted by radiation; however, their numbers do not recover. Critically, the impact of radiation exposure on tissue-resident memory T cells (TRM) remains unknown. Here, we found that sublethal thorax-targeted radiation resulted in the rapid and prolonged numerical decline of influenza A virus (IAV)-specific lung TRM in mice, but no decline in antigen-matched circulating memory T cells. Prolonged loss of lung TRM was associated with decreased heterosubtypic immunity. Importantly, boosting with IAV-epitope expressing pathogens that replicate in the lungs or peripheral tissues or with a peripherally administered mRNA vaccine regenerated lung TRM that was derived largely from circulating memory CD8+ T cells. Designing effective vaccination strategies to regenerate TRM will be important in combating the immunological effects of radiation exposure.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Radiation Exposure , Mice , Animals , CD8-Positive T-Lymphocytes , Memory T Cells , Lung , Immunologic Memory
2.
J Immunol ; 212(4): 563-575, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38149923

ABSTRACT

Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to ß-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary ß-coronavirus infections in hosts with variable susceptibility.


Subject(s)
Murine hepatitis virus , Sepsis , Humans , Mice , Animals , Mice, Inbred C57BL , Mice, Inbred C3H , Mice, Inbred Strains , Genetic Predisposition to Disease
3.
J Immunol ; 210(8): 1025-1030, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36912465

ABSTRACT

Although tissue resident memory T cells (TRM) in the lung confer robust protection against secondary influenza infection, their in vivo production of IFN-γ is unknown. In this study, using a mouse model, we evaluated production of IFN-γ by influenza-induced TRM (defined as CD103+) that localize to the airways or lung parenchyma. Airway TRM consist of both CD11ahi and CD11alo populations, with low CD11a expression signifying prolonged airway residence. In vitro, high-dose peptide stimulation evoked IFN-γ from most CD11ahi airway and parenchymal TRM, whereas most CD11alo airway TRM did not produce IFN-γ. In vivo production of IFN-γ was clearly detectable in CD11ahi airway and parenchymal TRM but essentially absent in CD11alo airway TRM, irrespective of airway-instilled peptide concentration or influenza reinfection. The majority of IFN-γ-producing airway TRM in vivo were CD11ahi, suggesting recent airway entry. These results question the contribution of long-term CD11alo airway TRM to influenza immunity and reinforce the importance of defining TRM tissue compartment-specific contributions to protective immunity.


Subject(s)
Influenza, Human , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , Immunologic Memory , Lung , Interferon-gamma , Receptors, Antigen, T-Cell/metabolism
4.
J Immunol ; 210(9): 1305-1313, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36939394

ABSTRACT

Production of IFN-γ by CD4 T cells is widely theorized to control Plasmodium parasite burden during blood-stage malaria. Surprisingly, the specific and crucial mechanisms through which this highly pleiotropic cytokine acts to confer protection against malarial disease remain largely untested in vivo. Here we used a CD4 T cell-restricted Cre-Lox IFN-γ excision mouse model to test whether and how CD4 T cell-derived IFN-γ controls blood-stage malaria. Although complete absence of IFN-γ compromised control of the acute and the chronic, recrudescent blood-stage infections with P. c. chabaudi, we identified a specific, albeit modest, role for CD4 T cell-derived IFN-γ in limiting parasite burden only during the chronic stages of P. c. chabaudi malaria. CD4 T cell IFN-γ promoted IgG Ab class switching to the IgG2c isotype during P. c. chabaudi malaria in C57BL/6 mice. Unexpectedly, our data do not support gross defects in phagocytic activity in IFN-γ-deficient hosts infected with blood-stage malaria. Together, our data confirm CD4 T cell-dependent roles for IFN-γ but suggest CD4 T cell-independent roles for IFN-γ in immune responses to blood-stage malaria.


Subject(s)
Malaria , Plasmodium chabaudi , Mice , Animals , CD4-Positive T-Lymphocytes , Mice, Inbred C57BL , Interferon-gamma
5.
Cell Rep ; 37(5): 109956, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731605

ABSTRACT

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Liver/immunology , Malaria/immunology , Plasmodium berghei/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/parasitology , Disease Models, Animal , Female , Host-Parasite Interactions , Listeria monocytogenes/immunology , Listeria monocytogenes/pathogenicity , Listeriosis/blood , Listeriosis/immunology , Listeriosis/microbiology , Liver/metabolism , Liver/microbiology , Liver/parasitology , Lymphocyte Function-Associated Antigen-1/metabolism , Malaria/blood , Malaria/parasitology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Parasite Load , Phagocytes/immunology , Phagocytes/metabolism , Phagocytes/microbiology , Phagocytes/parasitology , Plasmodium berghei/pathogenicity , Time Factors
6.
J Immunol ; 207(7): 1871-1881, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34479943

ABSTRACT

Sepsis reduces the number and function of memory CD8 T cells within the host, contributing to the long-lasting state of immunoparalysis. Interestingly, the relative susceptibility of memory CD8 T cell subsets to quantitative/qualitative changes differ after cecal ligation and puncture (CLP)-induced sepsis. Compared with circulatory memory CD8 T cells (TCIRCM), moderate sepsis (0-10% mortality) does not result in numerical decline of CD8 tissue-resident memory T cells (TRM), which retain their "sensing and alarm" IFN-γ-mediated effector function. To interrogate this biologically important dichotomy, vaccinia virus-immune C57BL/6 (B6) mice containing CD8 TCIRCM and skin TRM underwent moderate or severe (∼50% mortality) sepsis. Severe sepsis led to increased morbidity and mortality characterized by increased inflammation compared with moderate CLP or sham controls. Severe CLP mice also displayed increased vascular permeability in the ears. Interestingly, skin CD103+ CD8 TRM, detected by i.v. exclusion or two-photon microscopy, underwent apoptosis and subsequent numerical loss following severe sepsis, which was not observed in mice that experienced moderate CLP or sham surgeries. Consequently, severe septic mice showed diminished CD8 T cell-mediated protection to localized skin reinfection. Finally, the relationship between severity of sepsis and demise in circulatory versus tissue-embedded memory CD8 T cell populations was confirmed by examining tumor-infiltrating and nonspecific CD8 T cells in B16 melanoma tumors. Thus, sepsis can differentially affect the presence and function of Ag-specific CD8 T cells that reside inside tissues/tumors depending on the severity of the insult, a notion with direct relevance to sepsis survivors and their ability to mount protective memory CD8 T cell-dependent responses to localized Ag re-encounter.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Sepsis/immunology , T-Lymphocyte Subsets/immunology , Animals , Blood Circulation , Cells, Cultured , Disease Progression , Humans , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity
7.
Elife ; 102021 06 18.
Article in English | MEDLINE | ID: mdl-34143731

ABSTRACT

Protective lung tissue-resident memory CD8+T cells (Trm) form after influenza A virus (IAV) infection. We show that IAV infection of mice generates CD69+CD103+and other memory CD8+T cell populations in lung-draining mediastinal lymph nodes (mLNs) from circulating naive or memory CD8+T cells. Repeated antigen exposure, mimicking seasonal IAV infections, generates quaternary memory (4M) CD8+T cells that protect mLN from viral infection better than 1M CD8+T cells. Better protection by 4M CD8+T cells associates with enhanced granzyme A/B expression and stable maintenance of mLN CD69+CD103+4M CD8+T cells, vs the steady decline of CD69+CD103+1M CD8+T cells, paralleling the durability of protective CD69+CD103+4M vs 1M in the lung after IAV infection. Coordinated upregulation in canonical Trm-associated genes occurs in circulating 4M vs 1M populations without the enrichment of canonical downregulated Trm genes. Thus, repeated antigen exposure arms circulating memory CD8+T cells with enhanced capacity to form long-lived populations of Trm that enhance control of viral infections of the mLN.


Subject(s)
CD8-Positive T-Lymphocytes , Lymph Nodes , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Female , Influenza A virus/immunology , Lung/cytology , Lung/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Transcriptome/genetics
8.
Mol Ther ; 29(2): 611-625, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33160073

ABSTRACT

A first-in-human phase I trial of Vvax001, an alphavirus-based therapeutic cancer vaccine against human papillomavirus (HPV)-induced cancers was performed assessing immunological activity, safety, and tolerability. Vvax001 consists of replication-incompetent Semliki Forest virus replicon particles encoding HPV16-derived antigens E6 and E7. Twelve participants with a history of cervical intraepithelial neoplasia were included. Four cohorts of three participants were treated per dose level, ranging from 5 × 105 to 2.5 × 108 infectious particles per immunization. The participants received three immunizations with a 3-week interval. For immune monitoring, blood was drawn before immunization and 1 week after the second and third immunization. Immunization with Vvax001 was safe and well tolerated, with only mild injection site reactions, and resulted in both CD4+ and CD8+ T cell responses against E6 and E7 antigens. Even the lowest dose of 5 × 105 infectious particles elicited E6/E7-specific interferon (IFN)-γ responses in all three participants in this cohort. Overall, immunization resulted in positive vaccine-induced immune responses in 12 of 12 participants in one or more assays performed. In conclusion, Vvax001 was safe and induced immune responses in all participants. These data strongly support further clinical evaluation of Vvax001 as a therapeutic vaccine in patients with HPV-related malignancies.


Subject(s)
Cancer Vaccines/immunology , Genetic Vectors/genetics , Neoplasms/etiology , Neoplasms/therapy , Papillomavirus Infections/complications , Papillomavirus Vaccines/immunology , Semliki forest virus/genetics , Alphapapillomavirus/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Genetic Vectors/administration & dosage , Humans , Immunization , Neoplasms/prevention & control , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/genetics , Repressor Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Vaccination
9.
Article in English | MEDLINE | ID: mdl-33288540

ABSTRACT

Despite the availability of seasonal vaccines, influenza A (IAV) prevails as a leading cause of respiratory infection worldwide. Current vaccination efforts aim at increasing protection against heterologous and potentially pandemic IAV strains. Lung-resident CD8+ T cells (Trm) generated upon IAV infection are vital for heterosubtypic immunity to IAV reexposure and provide quick and robust responses upon reactivation. Yet, protection wanes with time as lung Trm cell numbers decline, a contrasting feature with Trm cells at other mucosal sites such as the skin. In this review, we discuss current data on lung Trm compared to Trm cells in other tissues. Furthermore, major knowledge gaps in the generation and maintenance of IAV-specific lung Trm are addressed and mechanisms that may contribute to their decline are discussed. Further understanding in the mechanisms that govern effector function versus immunopathology is paramount for future IAV vaccine design in enhancing durability of lung Trm cells.


Subject(s)
CD8-Positive T-Lymphocytes , Influenza, Human/immunology , Lung/immunology , Memory T Cells , Animals , Humans , Influenza Vaccines , Influenza, Human/prevention & control
10.
Trends Immunol ; 41(4): 274-285, 2020 04.
Article in English | MEDLINE | ID: mdl-32139317

ABSTRACT

Sialic acid sugar-carrying glycans, sialoglycans, are aberrantly expressed on many tumor cells and have emerged as potent regulatory molecules involved in creating a tumor-supportive microenvironment. Sialoglycans can be recognized by sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immunomodulatory receptors. Most mammalian Siglecs transmit inhibitory signals comparable with the immune checkpoint inhibitor programmed death protein 1 (PD-1), but some are activating. Recent studies have shown that tumor cells can exploit sialoglycan-Siglec interactions to modulate immune cell function, contributing to an immunosuppressive tumor microenvironment (TME). Interference with sialoglycan synthesis or sialoglycan-Siglec interactions might improve antitumor immunity. Many questions regarding specificity, signaling, and regulatory function of sialoglycan-Siglec interactions remain. We posit that sialoglycans and Siglecs present as potential glyco-immune 'checkpoints' for cancer immunotherapy.


Subject(s)
Polysaccharides , Sialic Acid Binding Immunoglobulin-like Lectins , Tumor Microenvironment , Animals , Humans , Immunity , Immunotherapy , Neoplasms/therapy , Polysaccharides/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/immunology , Tumor Microenvironment/immunology
11.
Cancer Immunol Immunother ; 68(5): 849-859, 2019 May.
Article in English | MEDLINE | ID: mdl-30465060

ABSTRACT

Cancer immunotherapy has greatly advanced in recent years. Most immunotherapeutic strategies are based on the use of immune checkpoint blockade to unleash antitumor immune responses or on the induction or adoptive transfer of immune effector cells. We aim to develop therapeutic vaccines based on recombinant Semliki Forest virus vectors to induce tumor-specific effector immune cells. In this review, we describe our ongoing work on SFV-based vaccines targeted against human papillomavirus- and hepatitis C virus-related infections and malignancies, focusing on design, delivery, combination strategies, preclinical efficacy and product development for a first-in-man clinical trial with an HPV-specific vaccine.


Subject(s)
Alphavirus/genetics , Cancer Vaccines/immunology , Neoplasms/therapy , Oncogenic Viruses/physiology , Virus Diseases/therapy , Animals , Clinical Trials as Topic , Genetic Vectors , Humans , Immunization , Neoplasms/immunology , Virus Diseases/immunology
12.
Oncoimmunology ; 7(10): e1487913, 2018.
Article in English | MEDLINE | ID: mdl-30288352

ABSTRACT

Cervical cancer develops as a result of infection with high-risk human papillomavirus (HPV) through persistent expression of early proteins E6 and E7. Our group pioneered a recombinant viral vector system based on Semliki Forest virus (SFV) for vaccination against cervical cancer. The most striking benefit of this alphavirus vector-based vaccine platform is its high potency. DNA vaccines on the other hand, have a major advantage with respect to ease of production. In this study, the benefits associated with both SFV-based vaccines and DNA vaccines were combined with the development of a DNA-launched RNA replicon (DREP) vaccine targeting cervical cancer. Using intradermal delivery followed by electroporation, we demonstrated that DREP encoding for E6,7 (DREP-E6,7) induced effective, therapeutic antitumor immunity. While immunizations with a conventional DNA vaccine did not prevent tumor outgrowth, immunization with a 200-fold lower equimolar dose of DREP (0.05 µg of DREP) resulted in approximately 85% of tumor-free mice. To overcome the safety concern of potential malignant transformation at the vaccination site, we evaluated the anti-tumor effect of a DREP vaccine encoding a shuffled version of E7 (DREP-E7sh). DREP-E7sh delayed tumor growth yet not to the same extent as DREP-E6,7. In addition, inclusion of a helper cassette and an ER targeting signal (sigHelp) did not significantly further enhance the suppression of tumor outgrowth in the long term, albeit exhibiting better tumor control early after immunization. Collectively, this study points towards the clinical evaluation of DREP encoding HPV antigens as a potent immunotherapy for patients with HPV16 (pre)-malignancies.

13.
Oncoimmunology ; 6(9): e1338230, 2017.
Article in English | MEDLINE | ID: mdl-28932636

ABSTRACT

Human papilloma virus (HPV)-induced cervical cancer constitutively expresses viral E6/E7 oncoproteins and is an excellent target for T cell-based immunotherapy. However, not all tumor-infiltrating T cells confer equal benefit to patients, with epithelial T cells being superior to stromal T cells. To assess whether the epithelial T cell biomarker CD103 could specifically discriminate the beneficial antitumor T cells, association of CD103 with clinicopathological variables and outcome was analyzed in the TCGA cervical cancer data set (n = 304) and by immunohistochemistry (IHC) in an independent cohort (n = 460). Localization of CD103+ cells in the tumor was assessed by immunofluorescence. Furthermore, use of CD103 as a response biomarker was assessed in an in vivo E6/E7+ tumor model. Our results show that CD103 gene expression was strongly correlated with cytotoxic T cell markers (e.g. CD8/GZMB/PD1) in the TCGA series. In line with this, CD103+ cells in the IHC series co-expressed CD8 and were preferentially located in cervical tumor epithelium. High CD103+ cell infiltration was strongly associated with an improved prognosis in both series, and appeared to be a better predictor of outcome than CD8. Interestingly, the prognostic benefit of CD103 in both series seemed limited to patients receiving radiotherapy. In a preclinical mouse model, HPV E6/E7-targeted therapeutic vaccination in combination with radiotherapy increased the intratumoral number of CD103+ CD8+ T cells, providing a potential mechanistic basis for our results. In conclusion, CD103 is a promising marker for rapid assessment of tumor-reactive T cell infiltration of cervical cancers and a promising response biomarker for E6/E7-targeted immunotherapy.

14.
Vaccines (Basel) ; 3(2): 221-38, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-26343186

ABSTRACT

The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

15.
Anticancer Agents Med Chem ; 14(2): 265-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24237218

ABSTRACT

Cervical cancer is the second most common malignancy among women worldwide. The prime causal factor of the disease is a persistent infection with human papillomavirus (HPV) with individuals failing to mount a sufficient immune response against the virus. Despite the current success of HPV16- and 18-specific prophylactic vaccination, established HPV infections and associated neoplasia require therapeutic vaccines with the induction of cellular immunity. The sustained expression of early proteins E6 and E7 from major oncogenic HPV genotypes in cervical lesions are ideal targets for the design of immunotherapeutic strategies. These strategies, particularly subunit vaccines, may require additional help from immunomodulators to enhance HPV-specific cellular responses. This review discusses recent studies, published since 2008, relating to immunotherapeutic strategies against HPV that include immunomodulators. These immunomodulators fall within the category of toll-like receptor adjuvants for innate immune activation, adjuvants directly contributing to adaptive immunity, such as cytokines and costimulatory molecules, and those that target tumor-induced immunosuppressive mechanisms. Using a combination of these strategies with delivery-based approaches may be most beneficial for the success of therapeutic vaccines against HPV-induced neoplasia in the clinic.


Subject(s)
Immunologic Factors/therapeutic use , Papillomaviridae/immunology , Papillomavirus Vaccines/therapeutic use , Uterine Cervical Neoplasms/therapy , Adaptive Immunity , Animals , Combined Modality Therapy , Cytokines/immunology , Cytokines/therapeutic use , Female , Humans , Immunity, Innate , Immunosuppression Therapy , Immunotherapy , Toll-Like Receptors/immunology , Tumor Microenvironment/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...